A Methodology for Control-Dominated Systems Codesign

S. Antoniazzi (a,b), A. Balboni (b), W. Fornaciari (a), D. Sciuto (c)

(a) CEFRIEL, via Emanueli 15, 20126 Milano (MI), Italy, E-mail: fornacia@mailer.cefriel.it
(b) ITALTEL-SIT, Central Research Labs, CLTE, 20019 Castelletto di Settimo m.se (MI), Italy
(c) Politecnico di Milano, Dip. Elettronica e Inform., P.zza L. Da Vinci 32, Milano, Italy, E-mail: sciuto@elet.polimi.it

Abstract

This paper presents a methodology and a supporting
framework for the design of systems composed of
hardware and software modules. The aim is to define an
approach, tailored for control-oriented applications, to
manage system cospecification, high-level partitioning,
hw/sw tradeoffs and cosynthesis. The main goals are
always to improve design time and costs by supporting a
flexible architectural exploration and to achieve a smooth
integration within standard industrial design
environments.

Our research effort focuses on fulfilling the goal of
linking high-level specifications to efficient and
cost-effective hw/sw implementations, by investigating
techniques such as synchronous cospecification styles,
direct machine code generation as well as exploiting the
capability of commercial VHDL synthesizers.

1. Introduction

Heterogeneous hardware/software architectures, for
many application fields requiring an ASIC approach, may
provide a more effective design solution for some target
performance/cost figures with respect to fully dedicated
hardware implementations. Therefore, new design
automation methodologies should be placed on top of
current ASIC design flows in order to integrate dedicated
logic obtained by register-transfer level synthesis with
CPU core cells and the related software (firmware).

Although hardware/software codesign goals and
strategies will not probably converge to a single common
interpretation, due to the wide spectrum of application
fields and design requirements, the potential value-added
provided by the automation of codesign tasks has been
shown by a number of recent research works.

The approach considered within the COSYMA project
[1] assumes as input of the codesign flow a textual
specification written in the CX language, a C extension
supporting task-level concurrency and timing constraints.
Such a specification is translated into an internal
representation (Extended Syntax Graph) on which
preliminary simulation and profiling can be carried out.
The environment provides an automatic partitioning stage
based on a simulated annealing algorithm. The general

0-8186-6315-4/94 $04.00 © 1994 IEEE

[\

strategy assumes an initial fully-software solution and,
exploiting information obtained from profiling, carries out
hardware extraction (nodes to be moved to hardware are
marked in the ESG). Candidate solutions are compared by
applying a cost function to the marked ESG. After hw/sw
partitioning, hardware-bound parts of the ESG are
translated into HardwareC language and implemented via
the Olympus high-level synthesis system [2]. On the other
hand, C source code is generated from software-bound
parts. Hardware/software interfacing is based on template
protocols.

A dual approach to automated hw/sw partitioning is
presented in [3]. The front-end and the back-end stages are
conceptually similar to COSYMA: a textual specification
(written in HardwareC) is translated into an internal graph-
based representation (System Graph); after hw/sw
partitioning, parts targeted to hardware are synthesized by
Olympus while C code is produced for software by
exploiting a coroutine-based multiprocessing scheme. The
main difference can be found in the strategy adopted by the
partitioner (Vulcan II). Starting from the System Graph,
two sets of graphs (hardware-bound and software-bound,
respectively) are generated. In the initial solution most of
the design is bounded to dedicated hardware while the only
functionalities in the software partition are related to
operations characterized by nondeterministic delays (e.g.
synchronization primitives and data-dependent loops). An
iterative process moves operations between the partitions
with the goal of reducing communication overhead while
satisfying timing, bus/processor utilization and feasibility
constraints. A hw/sw interfacing mechanism is provided,
based on polling or FIFO buffering.

Codesign environments not emphasizing the automation
of the hw/sw partitioning stage have been also proposed.
In [4] system specifications are modeled by asynchronous
non-deterministic finite-state machines (CFSM) which, in
perspective, will be obtained from a VHDL or ESTEREL
front-end. The internal representation of CFSM (SHIFT) is
suitable for preliminary analysis by formal verification
techniques. Each SHIFT module is manually assigned to a
hardware or a software implementation and translated into
an equivalent synchronous deterministic FSM. Hardware
synthesis is carried out by the SIS tool while software is
implemented in terms of a C-language function. Such
function is activated by the events associated with the

FSM, computes the next state and produces output events.
A micro-kernel, customized for each supported micro-
controller, provides scheduling for multiple FSMs.

An alternative solution to hw/sw binding is shown in the
CASTLE project [5]. Systems are modeled in standard
languages such as VHDL, Verilog and C. The internal
representation (Software View) is hierarchical and
composed of control-flow graphs and basic blocks. High-
level transformations such as loop unrolling and lifetime
analysis can be also performed. The CASTLE approach,
whose implementation is currently under development, is
based on the concept of a library of complex components
(processors, memories, special-purpose off-the-shelf chips
as well as ASICs) and a library-driven mapping strategy.
Concerning the hardware synthesis stage, a scheduling
algorithm considering resource constraints and minimizing
the number of clock steps has been developed, followed by
a resource allocation process.

Finally, some results not concerning the entire codesign
flow, but focusing on the specific issues of system
partitioning and hw/sw binding, have been presented in
recent works.

In [6] a methodology is reported based on a formal
language (UNITY) and the related theory and proof
system. The description style aims at capturing parallel
computations in a declarative way using variables to model
states and representing transitions through variable
modifications. In UNITY there is no concept of control
flow and both synchronous and asynchronous behaviors
can be specified. The partitioning process starts from a
qualitative analysis of the specifications leading to a
classification of UNITY basic elements (single enumerate
assignments without mutual exclusion) on the basis of
predefined criteria such as asynchronicity, synchronicity,
mutual exclusion and complexity. An iterative two-stage
clustering algorithm is then applied: the former exploits the
classification results, the latter is concerned with
increasing parallelism. Finally, clusters are allocated to a
specified implementation architecture, based on a master-
slave scheme, where a RISC processor controls the
activation of one or more ASICs.

The PARTIF tool (7] allows the user to explore
alternative system-level partitions by manipulating a
hierarchical concurrent finite-state model (SOLAR). A
primitive set of transformation (moving states, merging
states) and decomposition (splitting/cutting macro-states)
rules has been defined. At each step of an iterative
exploration process, users select a candidate rule. Such
rule is automatically checked for feasibility (taking into
account costs in terms of state/operation number and
design constraints) and, if feasible, it is applied producing
a modified system that becomes the new input to the next
iteration.

Aim of this paper is to introduce a novel methodology
to manage the codesign process for a specific application
field, namely control-dominated ASICs such as those
embedded into telecom digital switching subsystems. The
development of such methodology is currently in progress

within a research project called TOSCA (TOols for System
Codesign Automation), in which one of the main activity is
the definition of a support environment by integrating
commercial EDA software with new experimental tools.

After a general overview of the codesign methodology,
the paper will discuss the main phases allowing hw/sw
tradeoff exploration and cosynthesis starting from high-
level cospecification. The prototype software environment,
supporting the envisaged codesign flow, will also be
addressed.

2. Overview

The proposed methodology aims at allowing the
designer to experiment alternative system designs in order
to balance hardware cost and software performance. Such
a goal can be achieved through a design flow, able to
capture the initial specification avoiding as much as
possible any implementation bias but, at the same time,
suitable to make possible fast architectural exploration and
direct integration within existing commercial synthesis
environments.

In order to give effectiveness and validate the proposed
approach, a prototype software environment, supporting
the codesign flow depicted in fig.1, is currently under
development.

SPEEDCHART DB

Architectural
Exploration Softwars Mapping
-restructuring - multithread managemaen
- allocation - virtusd code generation
ot i °
[GostPertormancs |
Prodiction TOSCA DB Hardware Mapping
[Houristic Recipe | Hw/Sw Intertace
Management Synthesis
IR ———— Expon
Commaercial VHDL
i Tool
Tanget Code
CostPeriormance
Evaluation
U Jforeseen [] underdev. [ready

Figure 1: The TOSCA environment.

The target is to cover the following issues:

e acquisition of behavioral specifications, suited to the
application field of interest, while maintaining full
independence of any particular hw/sw implementation;

¢ analysis/validation at specification-level;
tool-directed restructuring and hw/sw binding of
specifications;

o concurrent synthesis of sw-bound, hw-bound parts and

related interfaces;

e cost/performance analysis of the alternative hw/sw
architectures;

e integration with commercial RTL synthesis and
optimization tools, as well as software/firmware
development tools.

The codesign process starts from a system model
captured via a mixed graphical/textual formalism, based on
concurrent and hierarchical finite-state machines (FSMs).
After a preliminary analysis/validation activity, an internal
system representation (TOSCA DB) tailored to support
high-level architectural exploration, is obtained.

The main activities involving the design database, are
the restructuring of the initial system modularization to
produce a new set of system partitions and their
association (binding) either with software or with
dedicated hardware; the hardware-software interface
generation; the cosynthesis stage. A set of strategies and
basic transformations can be iterated onto the system
representation, until the design constraints are satisfied.
The user, as well as some heuristic strategies, can organize
these actions along predefined schedules called recipes.

Both software and hardware synthesis exploit
technology-dependent parameters, enabling a realistic
cost/performance estimation of each proposed architectural
solution.

According to the chosen level of accuracy, the
information used for hardware characterization range
between purely estimation and data obtained through an
actual synthesis process. Due to the impossibility of
carefully controlling time delay, code size and low level
interfacing schemas, the software parts need to be
considered at a lower level with respect to C-language
based solutions, in particular if processor retargeting
capabilities are envisaged. Our solution is to consider the
software description at the level of a virtual assembly
whose structure can be mapped onto different CPU cores
with fully predictable translation rules and, consequently,
reliable performance estimation.

Finally, back-end tools produce a design representation
of the selected hw/sw solution (assembly code, VHDL)
acceptable for the target commercial implementation
environment.

3. System representation

As mentioned in the introduction, the TOSCA approach
focuses on control-dominated designs. Therefore, a
particular specification style has been adopted, based on a
preliminary analysis of the selected target field. Such
analysis stage has shown that the following aspects should
be carefully taken into account:

a) aconcurrent model is required, based on multiple
interacting processes;

b) each process may be properly modeled via a
synchronous state/transition description;

¢) high-level concepts/constructs such as timeouts,

behavioral hierarchies and symbolic data may be
very valuable in order to cope with specification
complexity and implementation independence;

d) logic functions and bit vector data types dominate
descriptions while arithmetic data processing plays a
secondary role;

e) multiple clocks may drive processes.

It should be pointed out that the synchronous paradigm
is not intended to force any hardware bias but to model the
intrinsic nature of the application itself. For a discussion of
synchronous approaches to reactive system modeling see
(8], [9].

A commercial environment (SPeeDCHART by Speed
Electronic) has been adopted for both specification and
validation purposes. The formalism provided by
SPeeDCHART belongs to the Statecharts family [10] [11],
coupling graphics with textual descriptions written in a
VHDL-like script language.

To give a flavor of system specification in the
TOSCA/SPecDCHART environment, fig.2 shows the top-
level diagram of a telecom ASIC design; its size, as well as
the one of the other examples reported in the following,
has been limited only to satisfy the paper length
requirement.

e 3

T
A
D
P

L] 1]

EEEE X

sl
SEEZ

Figure 2: An example of synchronous network.

The system is composed of multiple processes
communicating via shared signals. The
RX_BACKGROUND process is synchronized by the CKR
clock, while all other processes refer to the CKT clock.
The two clock signals are unrelated, so that special
synchronization elements (SYNC1,SYNC2) have to be
introduced.

In fig.3 some of the most significant features of the
finite-state specification of a process (MAIN) are shown.
The special state labeled entry always allows identification
of the initial state of a diagram at any hierarchical level.
Actions and priorities (represented via circled numbers on
edges) can be associated with transition edges. State nodes
can also have behavioral scripts in terms of entry/exit
actions: entry actions (such as the ones associated with the

IDLE state) are triggered when the related state is reached
and are semantically equivalent to actions associated with
all the incoming transitions; exit actions are triggered when
the related state is exited and are semantically equivalent
to actions associated with all the outcoming transitions.

Fenry

e T [MSEAGK PR

RIS

A \

([RX, usa_-snm ‘ard XS
RAXC RE!
AX DATA _
[C X MSG.START ana AXS. T
2 1 G ack BuSY

Figure 3: The MAIN process.

The example also shows additional features such as
timeouts (captured by the settimer statement and the active
attribute) and the symbolic representation of
communication messages (e.g. ACK_OK, ACK_FAIL,...).
Furthermore, two hierarchical states (RX_DATA and
TX_DATA) are included. Each state is associated with a
child diagram (fig.4 zooms on TX_DATA child). Because
of the child diagram models a non-terminating process, the
only way to stop its activity is to trigger a transition
outcoming from the parent state (child overriding).

TX_MSG<-DATA,
TX_DATA<-PT(15 downo @)
TX_MSG<-DATA;

TX_OATA<P ({23 downio 16]
TX_MSG<-DATA.

Figure 4: The TX_DATA child diagram.

Finally, the SPeeDCHART environment also allows
system validation by simulation, including visual
animation capabilities.

Since the subsequent codesign stages have been
implemented on top of a different software environment
(the O2 object-oriented DBMS) a preliminary step
(Import) has to be performed in order to translate
SPeeDCHART design data into the TOSCA internal
model. Such core representation preserves the
concurrent/hierarchical ~ structure of the original
specification. The main difference is in the management of
the textual scripts: the Import procedure starts from ASCII
files produced by SPeeDCHART and carries out a parsing
process building symbol tables for declarations and data
flow graphs for conditions and actions. Enumerative types
are also encoded in this step.

4. System design

After the Import procedure has been completed,
architectural tradeoffs may be carried out by iterated
manipulation of the core model. This stage manages two
classes of objects (processes, namely the modules in the
specification, and architectural units, i.e. the modules in
the target implementation) and involves three tightly
related activities:

J restructuring: transformations local to a single
process modifying the cardinality of the whole
process set (acts at process-level only);

. allocation: clustering of processes by assigning an
architectural unit identifier to each process (operates
on both processes and architectural units);

. hw/sw binding: marking of each architectural unit
either with a software or a hardware constraint
(operates on architectural units only).

In the following, a software-bound architectural unit
will be indicated with the term thread while a hardware-
bound unit will be called coprocessor.

Concerning restructuring, some basic transformation
algorithms have been made available:

a) unfolding entry/exit actions;

b) unfolding FSM enabling conditions;
c) flatten hierarchies;

d) mapping timers onto counters,

e) collapsing a set of processes;

As mentioned in section 3, entry/exit actions may be
possibly associated with states, in order to allow a more
concise representation. Users may preserve such a model
structure or apply the algorithm a), obtaining the
representation depicted in fig.5, by migrating entry and
exit actions respectively toward incoming and outcoming
transitions.

SPeeDCHART also allows to specification of a general
condition associated with a whole FSM: the FSM is
enabled if and only if such a condition is true. The
transformation b) moves the condition from the FSM level

downto each transition: such condition is merged with the
original transition predicate by using an AND operator.

condition/O-action
T-antry action »
T-exit action

condition/l-action + T-entry action m condition/l-action + T-exit action

>/ >

condition/l-action

Figure 5: State actions unfolding.

In order to make easier the hardware/software mapping
step, hierarchical descriptions can be expanded by
applying algorithm c). Referring to the case reported in
fig.6, all the incoming edges will be linked to the entry
state together with their condition/actions pairs.
Concerning the outcoming arcs, if no exit condition is
present, it is sufficient to create an edge connecting the exir
state with the target state at the upper level. In the general
case of edges having their own target state and
condition/actions pairs, for each state belonging to the
child it is necessary to introduce an edge connected to the
upper level state. Actions can still remain joined to the
original condition or added to the target state action list.

Figure 6: The simplest case of hierarchy removing.

Zero-flagged counter variables with decrement control,
introduced by transformation d), are employed to act as
special objects modelling timeout conditions.

Finally, the task of collapsing multiple machines on a
common final target machine (e) is implemented by a
technique based on symbolic execution. A similar
approach, but assuming an asynchronous semantics, is
discussed in [12]. This capability can be used to collapse
machines belonging to a common partition (architectural
unit) to obtain a coarse grain description useful for the
subsequent hw/sw binding and cosynthesis. The
pseudo-code algorithm is reported in fig.6, it is based upon
a basic procedure, MERGE, able to collapse two FSMs at
once.

Initialization: each initial process is assigned to a
architectural unit; each initial architectural unit must be hw or sw
bound by the user

For each architectural unit A belonging to the project do
CollapsedMachine := first module of A

While a module exist in A do

selected := extract module from A

CollapsedMachine := MERGE (CollapsedMachine, selected)
enwhile
endfor /* a set of collapsed architectural units is obtained */

Figure 7: Structure of the algorithm for building a set of
architectural units by pairwise merging of processes.

First actions of the MERGE(MA, MB) procedure are
the creation of the interface specification for the merged
machine and the removal of the unnecessary inter-module
links by transforming them into internal variables. MA and
MB, beginning from their first state, are then symbolically
executed in parallel. States in the target machine are
obtained from each explored state pair (MA,MB). Their
DFGs (if any entry/exit action is present) correspond to the
merging of those from MA and MB states. The transitions
of the merged-machine are obtained by considering all
possible combinations of those present in MA and MB.
For each resulting transition the following rules are
applied:

e actions are merged,;

¢ conditions are combined by an AND operator;

e priorities are managed by computing a function of the
original priorities.

Concerning the edges outcoming from collapsed states,
the evaluation of the new associated priorities is shown by
the simple example reported in fig.8. Each of the initial
states have a pair of exiting arcs with their own condition
and priority (either 1 or 2). The joined-state outcoming
arcs, will have a priority level that is the sum of those
associated with the original ones.

Figure 8 Determination of priorities and conditions associated with
the new arcs.

Users may define their own custom flows (recipes)
based upon the above kit of basic transformation
algorithms. Recipes may also contain special report
actions, describing characteristics and statistics about
intermediate and final results. The output of this process is
a set of monolithic architectural units with a binding
establishing either a hardware or software implementation.
Each architectural unit is then passed as input to the
subsequent cosynthesis stages, as described in section 5.

Additional transformation algorithms are under
development, such as moving arithmetic operators across
clock steps and splitting a process into multiple
subprocesses.

As an example of system restructuring and allocation

through application of the merging and flattening
algorithms, let us consider the system composed of three
basic machines drawn in fig.9. Two of them, Celll and
Cell2, have one level of hierarchy whose diagrams are
respectively reported in fig.10, fig.11, fig.12 and fig.13; in
fig.14 is depicted the only non-hierarchical machine.

C3[4] c514)

Figure 9: Top view of the entire system.

C: c<b
entry A: P2<=bsc
o P4<=ct+a
A a=2
b:=3
ci=4 Diagram Variables:
acinteger (0 to 10)
A: P2<sbic biinteger (0 to 10)
Péa<=c+a ciinteger (0 to 10)

Figure 10: Top level specification of the FSM represented by Celll

in fig.9.
S6
A: Pl<=8"d
: N Diagram Variables:
- . ainteger (0 to 10)
Aa=2 A °;':"’ b:integer (0 to 10)
b:=3 a=P4+P3 | cinteger (0to 10)

ci=4

A: a:=bnot m\)@)
b:=P2 bor P3

Figure 11: Top level specification of the FSM represented by Cell2
in fig.9.

entry
o A: a<=a+1
_/
A: Pa<=(c8)+b

Figure 12 Explosion of the hierarchical state S2 of Celll.

C:a>b
A: c:=C+2

A: b:=b+1
P1:=P2 exit

Figure 13: Explosion of hierarchical state S5 of Cell2.

. entry A: P3<=a"b
) a=c*b

@ Diagram Variables:

a:integer (0 to 10)
A b:=P1+P2 b:integer (0 to 10)
P3<=b+c c:integer (0 to 10)

Figure 14: Specification of the FSM represented by Cell3 in fig.9.

The restructuring/allocation process performed onto the
initial specification, produces two architectural units
(Po={Celll, Cell3}, PB={Cell2}) and a reduction in the
final number of FSMs due to Celll, Cell3 merging.

The first step has been hierarchy flattening, due to space
limit and for the sake of readability, only the state diagram
without actions and conditions of the architectural unit P,

is reported (fig.15).

© e
O
R O =—C

Figure 15 Flattening of Cell2 (architectural unit PB).

The description obtained by merging Celll and Cell3
after hierarchy removing, i.e. Pa, is reported in fig.16 (for
compactness, conditions and actions are omitted).

Figure 16 State diagram of architectural unit Po.

The detailed specification of both actions and
conditions, due to space limit, have not been reported.

5. Cosynthesis of hw and sw modules

The target hw/sw architecture is realized on a single
chip. The most general case includes one off-the-shelf
CPU core cell and a collection of synthesized
coprocessors. After restructuring, allocation and binding,
each resulting hardware-bound architectural unit is mapped
onto its own coprocessor. In this discussion the term
coprocessor includes also arithmetic/logic operations and
the possible private storage capability, while high-level
synthesis tools typically separate controllers from data-
paths.

If a coprocessor requires interfacing to/from software-
bound elements, then it is connected to the CPU shared
data bus (and related address/control lines) and to the
interrupt lines. All hardware-to-hardware interfaces are
managed by customized local interconnection lines. The
RAM memory required for program/data storage shares
with coprocessors the main data bus but can be accessed
only by the CPU core.

Concerning the hardware mapping strategy adopted in
TOSCA, it should be pointed out that control-oriented
specifications cannot be easily managed by a classical
high-level ~ synthesis approach involving operator
scheduling. In fact, circuit speed estimation is very
difficult when dealing with descriptions dominated by
logic functions, where arithmetic operations are typically
restricted to a few additions, subtractions and comparisons
(if any of them is present at all). During the next stage
involving VHDL translation into a generic netlist,
technology mapping and logic implementation, any direct
relationship between functional specification and
synthesized implementation is lost. Estimating area is also
a very hard task. As a consequence, scheduling operators
according to estimated propagation delays cannot be
considered a realistic approach. In the TOSCA module
devoted to hardware mapping, each hardware-bound
architectural unit (possibly obtained from multiple merged
processes) is implemented by generating a finite state
machine VHDL description. Since the starting point is a
synchronous model, no additional scheduling step is
needed. The VHDL code generator translates the internal
representation of each FSM into a VHDL template
complying to the guidelines for synthesizability enforced
by commercial tools such as MGC Autologic and
Synopsys. The data flow graphs modeling conditions and
actions are translated into VHDL statements included in
the related template. The algorithm adopted is able to
produce a very readable description by building
expressions whenever possible instead of basic
assignments for each DFG node. Parameters such as the
logic types to be used (e.g. BIT-VECTOR vs IEEE
standard packages) or modeling style (structural vs
behavioral) can be customized by the user.

In particular cases, such as for instance counters,
predefined library components may be preferred to RTL
synthesis in order to guarantee an efficient implementation.

Referring to the example considered in section 4 and

under the assumption of hardware binding for both the
architectural units, the produced VHDL implementation is
represented by two block-encapsulated processes.

The application field requirements have led to discard a
C-language based approach for the automated
implementation of software-bound elements. In fact an
high-level language such as C does not allow an accurate
control of time delays nor the code size as well as the low
level characterization of the I/O interface. Therefore, a
lower level of abstraction has been considered via the
concept of Virtual Instruction Set (VIS), comparable with
the one provided by a RISC assembly language while
maintaining independence from the target CPU core.

The VIS is defined in terms of a register-oriented
machine supporting unsigned/signed integer data types (8,
16 and 32 bits) as well as all typical arithmetic/logic
operations. Two types of instruction formats are
considered:

- op destination, source
- op destination

where both destination and source can be registers or
memory references (source can also be an immediate
operand). Data transfer from software to hardware and
viceversa is modeled via memory-mapped coprocessor
registers, associated with each port, accessible via the VIS
instruction write (port,data). Moreover, for both
in and inout ports, a RAM variable is also allocated. The
refresh of such a variable is performed through the VIS
instruction update, by considering the information stored
in the memory-mapped register transfer_status, specifying
where input data have to be read. The instruction update is
constituted by the two following operations:

1) get transfer_status value;

2) for each bit=1 of transfer_status, copy the value
stored in the register associated to such a bit, in the
corresponding RAM variable.

The overall code structure, can be viewed as an
interrupt service routine (ISR) partitioned into some
segments. Each ISR is composed of virtual code
concerning transition between non drop-thru nodes and,
before returning from the interrupt exception (RTE
instruction), the memory address needed to manage the
next ISR, will be loaded in register AO. The initial value of
A0 is the address of the ISR associated with the entry
node. A general model of the virtual code is shown in
fig.17.

Int_Handler:Jump (AO0)

S0:

update
conditionl
cjump L1
action 1
jump L2
Ll:

cjump Ln
action n

ILm: write (port, data)
A0 <- S1
rte
S1:
update
conditionl
cjump L1
action 1
jump L2
Ll:

Lm: write (port, data)
AD <- 82
rte

Figure 17:Virtual code structure (only two states are reported).

At present, a code generation prototype tool has been
developed supporting a single software-bound FSM
(anyway, multiple machines may be collapsed before
software synthesis). Such a tool provides register usage
optimization and automated packing of single-bit
variables. In fig.18, a simple example of register
optimization obtained by invoking the tool on a transition
condition, is reported. Note that the intermediate results
produced by the evaluation process of subexpressions are
always kept in machine registers, avoiding expensive
memory references.

Condition:

dff
VIS Code:
load.w RO, ¥y
eqg.w RO, x
load.w R1l, dgd
or.w R1, RO
load.w RO, sks
add.w RO, dj
and.w RO, R1
load.w R1, dff
gt.w R1, RO

(({x=y) OR dgd) AND (dj+sks)) >

Figure 18: Translation of a condition into the corresponding VIS
code.

Work is in progress in order to manage multiple
concurrent software threads with a minimum overhead,
adopting a static scheduling strategy. VIS code is finally
translated into the target assembly language (or binary
image) by first generating an ASCII representation and
invoking a rule-based program implemented by means ofa
PERL (a text processing language for UNIX platforms)
script. A retargeting tool has been implemented for a
Motorola 68000 core. The approach can be easily
extended to most popular CPU cores.

6. Conclusions and future developments

This paper has presented a methodology suitable to
support hw/sw codesign. A prototype toolset covering

cospecification, hw/sw exploration and cosynthesis has
been developed. Work is in progress aiming at introducing
more sophisticated algorithms and features on top of such
a basic framework. Currently most of the implementation
effort is devoted to the transformation algorithms and to
the cost/performance evaluation, while restructuring and
hw/sw binding can be performed only manually (the choice
concerning the strategy to be adopted at each iteration of
the exploration cycle is left to the user). Research is in
progress to introduce a higher level of automation, in
particular the following criteria are envisaged to drive such
activities: direct user selection; clustering according to
common logical clock rates; analysis of data flow
connectivity; analysis of resource (arithmetic, memory,...)
complexity and optimization. Global cosimulation is one
of the issues that will be addressed in the future work; both
the specification level and the implementation levels will
be developed.

References

[11 Benner T, Emst R, Henkel J, Hardware-Software
Cosynthesis for Microcontrollers, IEEE Design&Test,
Vol.10, No.4, December 1993.

[2] G. De Micheli et al., The Olympus Synthesis System, IEEE
Design and Test of Computers, Vol.7, N°5, October 1990,
pp.37-53.

[3] Gupta RK., and De Micheli G, Hardware-Software
Cosynthesis for Digital Systems, [EEE Design&Test,
September 1993.

[4] M.Chiodo, P.Giusto, A.Jurecska, L.Lavagno, H.Hsieh,
A.Sangiovanni-Vincentelli, Synthesis of Mixed Software-
Hardware Implementations from CFSM Specifications,
Proc. of 2nd Workshop on HW/SW Co-Design,
Cambridge, Massachussetts, October 1993.

[5] Steinhausen U., Camposano R. et alii, System-Synthesis
using Hardware/Software Codesign, Proc. of 2nd
Workshop on HW/SW Co-Design, Cambridge,
Massachussetts, October, 1993.

[6] E.Barros, W.Rosenstiel, A Method for Hardware Software
Partitioning, in Proc. of Compeuro, IEEE CS Press, 1992,
pp-194-199.

[7]1 Ismail T., O'Brien K., Jerraya A., Interactive System-level
Partitioning with PARTIF, Proc. of EDAC'94, Paris,
France, February, 1994.

[8] Benveniste A. and Berry G., The Synchronous Approach to
Reactive and Real-Time Systems, in Proc. of the IEEE,
Vo0.79, No.9, September 1991.

[10] Harel D. et al., STATEMATE: A Working Environment
for the Development of Complex Reactive Systems, I[EEE
Trans. on Software Engineering, Vol.16, No.4, April 1990.

[11] Narayan S., Vahid F., Gajski D.D., System Specification
with the SpecCharts Language, IEEE Design & Test,
Vol.9, No.4, December 1992.

[12] Wolf W., Takach A., Huang C., Manno R., The Princeton
University Behavioral Synthesis System, 29th DAC, 1992.

